Kinetics of Cytosolic Ca²⁺ Concentration after Photolytic Release of 1-p-myo-Inositol 1,4-Bisphosphate 5-Phosphorothioate from a Caged Derivative in Guinea Pig Hepatocytes

J. F. Wootton, J. E. T. Corrie, T. Capiod, J. Feeney, D. R. Trentham, and D. C. Ogden National Institute for Medical Research, Mill Hill, London NW7IAA, United Kingdom

ABSTRACT The influence of 1-p-myo-inositol 1,4,5-trisphosphate (InsP₃) breakdown by InsP₃ 5-phosphatase in determining the time course of Ca2+ release from intracellular stores was investigated with flash photolytic release of a stable InsP3 derivative, 5-thio-InsP₃, from a photolabile caged precursor. The potency and Ca²⁺-releasing properties of the biologically active D isomers of 5-thio-InsP₃ and InsP₃ itself were compared by photolytic release in guinea pig hepatocytes. After a light flash, cytosolic free calcium concentration ([Ca2+]i) showed an initial delay before rising quickly to a peak and declining more slowly to resting levels, with time course and amplitude generally similar to those seen with photolytic release of InsP₃. Differences were a three- to eightfold lower potency of 5-thio-InsP₃ in producing Ca²⁺ release, much longer delays between photolytic release and Ca²⁺ efflux with low concentrations of 5-thio-InsP₃ than with InsP₃, and persistent reactivation of Ca²⁺ release, producing periodic fluctuations of cytosolic [Ca²⁺], with high concentrations of 5-thio-InsP₃ but not InsP₃ itself. The lower potency of 5-thio-InsP₃ may be a result of a lower affinity for closed receptor/channels or a lower open probability of liganded receptor/channels. The longer delays with 5-thio-InsP₃ at low concentration suggest that metabolism of InsP₃ by 5-phosphatase may reduce the concentration sufficiently to prevent receptor activation and may have a similar effect on InsP₃ concentration during hormonal activation. The maximal rate of rise of [Ca2+], the duration of the period of high Ca2+ efflux, and the initial decline of [Ca2+], are similar with 5-thio-InsP₃ and InsP₃, indicating that InsP₃ breakdown is not important in terminating Ca²⁺ release. The second activation of InsP₃ receptors with 5-thio-InsP₃ and particularly the sustained periodic fluctuations of [Ca²⁺], indicate persistence of 5-thio-InsP₃, suggesting that InsP₃ breakdown prevents reactivation of InsP₃ receptors. The photochemical properties of 1-(2-nitrophenyl)ethyl caged 5-thio-InsP₃ are photolytic quantum yield = 0.57 (cf. 0.65 for caged InsP₃) and rate of photolysis = 87 s^{-1} (half-life approximately 8 ms; cf. 3 ms for caged InsP₃; pH7.1; ionic strength, 0.2 M; 21°C). Caged 5-thio-InsP₃ at concentrations up to 360 µM did not activate InsP₃ receptors to produce Ca²⁺ release or block Ca²⁺ release by free 5-thio-InsP₃.

INTRODUCTION

The role of 1-D-myo-inositol 1,4,5 trisphosphate (InsP₃) as a second messenger releasing Ca2+ from intracellular stores during hormonal activation of liver and other nonexcitable cells is well established (Burgess et al., 1984; see Berridge, 1993, for a review), and the pattern of Ca²⁺ release during hormone action shows evidence of complex regulation such as well defined periodic fluctuations of [Ca²⁺]; (Woods et al., 1986; Field and Jenkinson, 1987). Flash photolysis of caged InsP₃ to release a pulse of InsP₃ in the cytosol has been used to investigate the role of InsP3 receptor kinetics in the generation of Ca2+ transients in guinea pig hepatocytes and has shown the presence of cooperative and autoinhibitory steps in InsP₃ action on Ca²⁺ stores (Ogden et al., 1990). The role of metabolic breakdown of InsP₃ in the kinetics of Ca²⁺ mobilization is uncertain, and stable InsP₃ analogues resistant to InsP₃ 5-phosphatase, such as 1-DL-myo-inositol 1,4bisphosphate 5-phosphorothioate (DL-5-thio-InsP₃) (Safrany

et al., 1991), have been developed to show the effects of maintained stimulation (Berridge and Potter, 1990; Payne and Potter, 1991). The InsP₃ receptor, however, is inactivated rapidly after activation (Finch et al., 1991) resulting in distortion of the kinetics of Ca²⁺ release unless the ligand is applied as a pulse. For this reason a photolabile caged 5-thio-InsP₃ (the S-1-(2-nitrophenyl)ethyl ester of 5-thio-InsP₃; Fig. 1) has been developed to permit rapid release of 5-thio-InsP₃ adjacent to receptors in flash photolytic experiments. The biologically active D isomer of 1-D-myo-inositol 1,4-bisphosphate 5-phosphorothioate (5-thio-InsP₃) has been used in the experiments described here.

The photochemical properties of caged 5-thio-InsP₃ and the properties of photolytically released 5-thio-InsP₃ in releasing Ca²⁺ from stores are described here in a well defined system, the guinea pig hepatocyte. Isolated hepatocytes are readily loaded with caged 5-thio-InsP₃ and fluorescent Ca²⁺ indicators during whole-cell patch clamp. The responses to hormonal activation and to photolytically released InsP₃ are well characterized. When experiments are made in Cl⁻-free solution, guinea pig hepatocytes have predominantly a non-desensitizing K⁺ conductance activated by increases of cytosolic [Ca²⁺] above resting levels. This conductance serves as an endogenous Ca²⁺ indicator that complements the use of fluorescent Ca²⁺ probes (Capiod and Ogden, 1989b).

InsP₃ generated by hormonal stimulation releases Ca²⁺ from stores during glycogenolysis and induces KCl secretion via Ca²⁺ activation of K⁺ and Cl⁻ ion conductances in the

Received for publication 31 October 1994 and in final form 29 March 1995. Address reprint requests to Dr. D. C. Ogden, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. Tel.: 011-44-81-959-3666; Fax: 011-44-81-906-4477.

Dr. Wootton's present address: Department of Physiology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853-6401.

Dr. Capiod's present address: INSERM U274, UPS, 91405 Orsay, France.

© 1995 by the Biophysical Society

0006-3495/95/06/2601/07 \$2.00

$$\begin{array}{c} \text{HO} \\ \text{OPO}_{3}^{2^{-}} \\ \text{OPO}_{3}^{2^{$$

FIGURE 1 Structure of caged 5-thio-InsP₃,

surface membrane. Hormonally evoked Ca²⁺ release shows periodic spiking, and the role of InsP₃ metabolism in generating the Ca²⁺ spike characteristics may be elucidated by studying the time course of Ca²⁺ release by photolytically released 5-thio-InsP₃ in comparison with InsP₃.

MATERIALS AND METHODS

Materials

Chemicals were Analar grade from BDH or Sigma Chemical Co. (St. Louis, MO). Furaptra K-salt (Magfura-2) was from Molecular Probes (Eugene, OR). Anhydrous tetrahydrofuran was prepared by distillation from sodium benzophenone. Liquid ammonia was collected under nitrogen after distillation from sodamide (prepared in situ from sodium and ferric nitrate). 1-D-2,3,6-Tri-O-benzyl-myo-inositol 1,4-bis-(dibenzylphosphate)-5-dibenzylphosphorothioate was synthesized as described elsewhere (Desai et al., 1994). 1-(2-Nitrophenyl)ethyl bromide and 1-(2-nitrophenyl)ethyl phosphate were prepared as previously described (Corrie et al., 1992a,b). Triethylammonium bicarbonate (TEAB) buffer was prepared by bubbling CO, into a 1 M solution of redistilled triethylamine in water at 4°C until the pH stabilized at approximately 7.4. Phosphate buffers were made by mixing appropriate ratios of salts (e.g., K,HPO₄ and KH,PO₄). ¹H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AM 500 spectrometer in D₂O at pH 5.5-6.0 and referenced to internal acetone (δ 2.225). Triethylammonium salts were exchanged with Dowex 50 (Na form) before obtaining spectra.

Spectral assignments were based on a combination of single frequency decoupling experiments and interpolation from published spectra of InsP₃ and caged InsP₃ (Walker et al., 1989). ³¹P NMR spectra were run with proton decoupling on a Bruker WM 200 spectrometer and referenced to external 85% H₃PO₄. Column fractions in TEAB buffer were augmented with D₂O (20% v/v) to provide a lock signal.

Synthesis of 5-thio-lnsP $_3$ and caged 5-thio-lnsP $_3$

Anhydrous ammonia (approximately 20 ml) was distilled into a solution of 1-D-2,3,6-tri-O-benzyl-myo-inositol 1,4-bis(dibenzylphosphate)-5dibenzylphosphorothioate (125 mg, 0.1 mmol) under nitrogen in dry tetrahydrofuran (4 ml) contained in a three-neck flask fitted with a dry ice condenser. The solution was stirred, and sodium (182 mg; freshly extruded wire) was added in portions over 5 min. After an additional 10 min, the blue color was discharged by addition of solid NH₄Cl, and the ammonia was allowed to evaporate under nitrogen. The residue was diluted with a solution of acetic acid (0.42 ml) in water (10 ml) and then adjusted to pH 7.3 with 1 M KOH and diluted with water to reduce the conductivity to 3200 µS. This solution was applied to a Whatman DE52 anion exchange column (1.5 \times 16 cm), and the column was washed with 10 mM TEAB (95 ml) and then eluted with a linear gradient formed from 10 and 1000 mM TEAB (each 200 ml) at a flow rate of 21 ml h^{-1} . Fractions (10.5 ml) were collected and analyzed by ³¹P NMR spectroscopy to locate 5-thio-InsP₃ (see below). Fractions 12-14 were

pooled, rotary evaporated (1 mm Hg), and reevaporated three times with methanol to remove excess TEAB. The residue (73 mg; 70 μmol based on the hexakis(triethylammonium) salt) was dissolved in 20 mM potassium phosphate, pH 8.0 (4.0 ml), and adjusted to pH 7.7 (20 μ l of 5.5 M KOH). A portion (2 ml) of this solution was stored at -20°C, and the remainder plus rinsings (approximately 0.5 ml) from the pH electrode was treated with 1 M dithiothreitol (10 μ l) and adjusted to pH 7.9. A solution of 1-(2-nitrophenyl)ethyl bromide (2.75 ml of 100 mM in dimethylformamide) was added, and the mixture was stirred in the dark at room temperature for 17 h. The solution was partitioned with diethyl ether (4 × 6 ml), and the aqueous phase was adjusted to pH 7.5 by addition of 0.5 M KH₂PO₄ (0.2 ml) and chromatographed in four equal portions on a Whatman Partisphere SAX column (catalogue No. 4621-0505) with 0.12 M ammonium phosphate, pH 5.4, plus methanol (19:1, v/v) as mobile phase at 1.0 ml min⁻¹. The flow rate was increased to 2.0 ml min⁻¹ after the breakthrough peak had eluted and the major peak was collected. The pooled peak fractions from the four purification runs were adjusted to pH 7.3 with KOH, diluted fourfold with water to reduce the ionic strength, and desalted by chromatography on a Whatman DE52 anion exchange column (see above), with a linear gradient of 10-1000 mM TEAB (each 250 ml) at a flow rate of 20 ml h⁻¹. Thirty-minute fractions were collected, and fractions 18 and 19 were pooled, rotary evaporated, and reevaporated (three times) with methanol. The residue was dissolved in 0.33 mM potassium phosphate (3 ml) and stored at –20°C. The concentration of caged 5-thio-InsP $_3$ (based on ϵ_{260} 4700 M $^{-1}$ cm⁻¹) was 3.90 mM. Fraction 20 contained a smaller quantity of the product and was processed separately to give 2.5 ml of 2.76 mM solution. The overall yield was 37%. 5-Thio-InsP3 had NMR spectral parameters as follows: $\delta_{\rm H}$ 4.33 (1 H, q, $J_{\rm 3,4;4,5;~and~H,~P}$ 9.2, H-4), 4.29 (1 H, t, $J_{1,2;2,3}$ 2.7, H-2), 4.27 (1 H, m, H-5), 4.06 (1 H, d/t, $J_{1,2}$ 2.7, $J_{1.6 \text{ and H, P}}$ 9.3, H-1), 3.95 (1 H, t, $J_{1.6:5.6}$ 9.4, H-6) and 3.76 (1 H, d/d, $J_{2,3}$ 2.8, $J_{3,4}$ 9.5, H-3); δ_{P} 45.5 (phosphorothioate), 4.8 (phosphate), and 3.2 (phosphate).

Caged 5-thio-InsP₃ had the following NMR spectrum in which most signals are split into pairs of equal intensity because of the presence of two diastereoisomers (designated A and B) that arise because of the racemic center in the cage moiety. When assignments to individual diastereoisomers could not be made unambiguously, signals are reported without assignment to either isomer: $\delta_{\rm H}$ 7.88–7.90 (2 H, m, Ar-H3,6); 7.71 and 7.72 (1 H, 2 overlapped t/d, $J_{\rm ortho}$ 7.6, $J_{\rm meta}$ 1.2, Ar-H5), 7.44–7.49 (1 H, m, Ar-H4), 5.05–5.08 (1 H, m, ArCH), 4.23 and 4.26 (1 H, 2 × t, $J_{1,2:23}$ 2.8, H-2_{B and A}), 4.13 and 4.21 (1 H, 2 × q, $J_{3,4:4:5; \text{ and H,P}}$ 8.8, H-4_{B and A}), 3.91 and 4.06 (1 H, 2 × q, $J_{4,5:5:6; \text{ and H, P}}$ 9.6, H-5_{B and A}), 3.86 and 3.93 (1 H, 2 × d/t, $J_{1,2}$ 2.9, $J_{1.6 \text{ and H, P}}$ 9.0, H-1), 3.68 and 3.83 (1 H, 2 × t, H-6), 3.66 and 3.71 (1 H, 2 × d/d, H-3_{B and A}), 1.74 (3 H, d, J 7, CH₃); $\delta_{\rm P}$ 21.65 and 22.00 (P₅), 5.0 (P₁), 4.8, and 4.9 (P₄).

Photolysis kinetics and product quantum yield of caged 5-thio-InsP₃

The kinetics were analyzed in an absorption spectrophotometer coupled to a Candela Model 1050 dye laser as described by Walker et al. (1988). The solution for photolysis was prepared in internal solution (see above) with 0.2 mM caged 5-thio-InsP $_3$ instead of 0.5 mM furaptra. The experiments were performed at 20°C, and the rate of decay of the single exponential signal at 406 nm (which has previously been shown to monitor the rate-determining step in photorelease of caged ATP (Walker et al., 1988)) was 87 s⁻¹.

For determination of the product quantum yield (Q_p) a solution containing 0.3 mM 1-(2-nitrophenyl)ethyl phosphate, 0.25 mM caged 5-thio-InsP₃, and 1 mM dithiothreitol in 0.1 M potassium phosphate, pH 7.0, was irradiated in a 4- \times 4-mm quartz cell with light from a mercury arc lamp that passed through a Beckman 18A filter (290–400 nm) before illuminating the cell. The irradiated samples were analyzed by reverse phase HPLC (Merck Lichrocart RP8 column; catalogue No. 50832) with 20 mM potassium phosphate, pH 5.6, as mobile phase at a flow rate of 1.5 ml min⁻¹. Retention times were 0.95 and 6.6 min for the caged 5-thio-InsP₃ and caged phosphate, respectively. The extent of conversion of each compound was

calculated from the decrease in areas of the peaks from the chromatogram. By comparison of the relative conversion of the two compounds with the known $Q_{\rm p}$ of 0.54 for 1-(2-nitrophenyl)ethyl phosphate (Kaplan et al., 1978), the $Q_{\rm p}$ for caged 5-thio-InsP $_{\rm 3}$ was calculated to be 0.57.

Cell preparation and solutions

Guinea pig hepatocytes were isolated by perfusion with collagenase followed by mechanical dispersion (Capiod and Ogden, 1989a,b). Cells in suspension were plated onto 40-mm quartz coverslips precoated with collagen in Williams medium E and kept at 37°C in an atmosphere of CO₂ (5%) in air. Whole-cell recordings were made after 2–5 h. Experiments were done in Cl⁻-free solutions with gluconate ions as substitute. External solution contained (mM): sodium gluconate, 145; potassium gluconate, 5.6; CaSO₄, 5; MgSO₄, 1.2; Hepes, 8. Internal solution contained (mM): potassium gluconate, 153; ATP-Na₂, 3; MgSO₄, 3; Hepes, 8; furaptra, 0.5; and concentrations of caged InsP₃ or caged 5-thio-InsP₃ as required. All the solutions were buffered at pH 7.3 and 0.2-μm Millipore filtered. Experiments were made at room temperature (approximately 27°C).

Whole-cell recordings

Standard tight-seal whole-cell patch clamp recording techniques were used to voltage clamp and internally perfuse single hepatocytes (Hamill et al., 1981). Patch pipettes were made from pyrex glass with a microfilament insertion, and the tips were covered with a wax comprising parafilm (40%) and mineral oil (60%). Whole-cell currents at constant holding potential, usually 0 mV, were recorded on FM tape. Guinea pig hepatocytes have small leakage conductance before activation and no voltage-gated conductance. The Ca²⁺-activated K⁺ conductance appears as an outward current of 0.5–1.5 nA amplitude at 0 mV.

Fluorescence measurements and flash photolysis

Furaptra K⁺ salt and the caged compounds were introduced into the cell by diffusion from the patch pipette, and 5–6 min were required for equilibration of the furaptra fluorescence signal. Microspectrofluorimetry was on a Nikon TMD microscope with 40×1.3 NA C-fluor objective. Excitation light (400–440 nm) was from a xenon arc lamp, and light emitted from the patch-clamped cell was defined by a rectangular diaphragm and taken to a photon-counting photomultiplier via a 490-nm long-pass filter. Photon pulses were counted in a Tecmar interface with PTI software and in parallel were converted to an analog signal by a Cairn Research photon-counting module and recorded on FM tape.

Furaptra was used at single excitation and emission wavelengths centered at 420 and 510 nm. The fluorescence is almost completely quenched by high $[Ca^{2+}]$, permitting ready calibration of the fluorescence to $[Ca^{2+}]$ (Konishi et al., 1991; Ogden et al., 1995). Briefly, because of the complete quench of furaptra fluorescence by high $[Ca^{2+}]$, the intrinsic fluorescence of the cell was taken as the fluorescence at saturating free $[Ca^{2+}]$, F_{Camax} . The dissociation constant, K, for Ca^{2+} -furaptra was estimated at 21°C in cuvette measurements as 48 μ M, with citrate buffers containing 0.5 mM free $M\dot{g}^{2+}$ at the experimental ionic strength. The free $[Ca^{2+}]_i$ in unstimulated guinea pig hepatocytes has been estimated as 0.2 μ M (Burgess et al., 1984), and therefore the fluorescence under resting conditions can be used as a good estimate of F_{Camin} , the fluorescence at 0 $[Ca^{2+}]$, once the pipette/cell concentrations have equilibrated in whole-cell recording. The free $[Ca^{2+}]$ during a response was calculated from fluorescence F with the relation

$$[Ca2+]i = K(FCamin - F)/(F - FCamax)$$
 (1)

The Ca^{2+} -dependent K^{+} conductance has a range of activation by Ca^{2+} ions of 0.3–1.5 μ M and a maximal open probability of 0.9 (Capiod and Ogden, 1989b). It is not activated at $[Ca^{2+}]_i$ less than 0.3 μ M and provides a good index of low free $[Ca^{2+}]_i$ in resting cells. Cells with any degree of activation of the K^{+} conductance before $InsP_3$ stimulation were not used. The conductance was also used as an index of $[Ca^{2+}]_i$ during experiments.

Photolysis was produced by a 1-ms pulse from a xenon arc flashlamp (Rapp and Guth, 1988) focused through a UG11 filter (280–360 nm) from 4 cm above the cell to produce a 4–5 mm spot. Photolytic conversion of caged ATP in the microscope was measured by high pressure liquid chromatography as described previously (Ogden et al., 1990) and the value used to calculate the photolytic conversion of caged 5-thio-InsP₃ by multiplying with the ratio of the quantum yields of caged thio-InsP₃ to caged ATP, i.e., 0.57/0.63, determined under the same ionic conditions.

The output of the flashlamp was adapted for most experiments to be adjustable in the range producing 6–14% photolysis of caged ATP by adjusting the voltage on the capacitor bank. The coefficient of variation of photolysis of caged ATP determined in a series of experiments was 10%, indicating the degree of reproducibility of photolysis in each cell. The optical artifact arising from the UV pulse was minimized (4–8 ms) by use of quartz coverslips and UV block oil between the coverslip and objective (Carter and Ogden, 1992; Ogden et al., 1993).

RESULTS

It is important that caged 5-thio-InsP₃ itself does not release Ca^{2+} at concentrations needed to generate sufficient free 5-thio-InsP₃ to produce activation. To test this, the Ca^{2+} activated K^+ conductance was monitored immediately on establishing a whole-cell recording to see, first, whether the cell had an initial low resting $[Ca^{2+}]$ suitable for experimentation and, second, to detect activation of Ca^{2+} release as the caged 5-thio-InsP₃ diffused into the cytosol, before the Ca^{2+} indicator was present. Caged 5-thio-InsP₃ produced no increase in $[Ca^{2+}]_i$ as judged by failure to activate the K^+ conductance at concentrations tested up to 360 μ M, i.e., approximately 200 times the lowest concentration of 5-thio-InsP₃ that produced an increase in $[Ca^{2+}]_i$ after photolysis (see below).

Once the fluorescent indicator was equilibrated in the cell, changes in [Ca²⁺], were monitored with both the fluorescent Ca^{2+} indicator furaptra (500 μ M) and the Ca^{2+} -activated K^{+} conductance as outward whole-cell current at 0 mV membrane potential. Responses to release of 1.1, 11, and 27 μ M 5-thio-InsP₃ in three different cells are shown in Figs. 2 and 3, and responses to low (0.7 μ M) and high (7 μ M) concentrations of InsP₃ in Fig. 4. The changes in [Ca²⁺], and K⁺ conductance shown in the traces in Figs. 2, 3, and 4 can be divided into three time components: (1) an initial delay between 5-thio-InsP₃ or InsP₃ release and the rise of [Ca²⁺], (2) a period of rapid efflux from stores producing a high $d[Ca^{2+}]/dt$ and fast conductance change, and (3) an abrupt change to a negative slope $d[Ca^{2+}]/dt$ as a result of net Ca²⁺ loss from the cytosol. The general characteristics of the response can be summarized with reference to Figs. 2, 3, and 4. At high concentrations of 5-thio-InsP₃ or InsP₃, the delay was shorter and maximal $d[Ca^{2+}]/dt$ faster than at low concentrations. At low (i.e., up to 3.2 μ M) 5-thio-InsP₃ concentrations, the decline of [Ca²⁺] showed a large monotonic component and evidence of reactivation of Ca²⁺ release in all but 1 cell. At high concentrations, clear evidence of prolonged Ca²⁺ release followed an initial monotonic decline. With InsP₃, prolonged activation of Ca²⁺ release after the initial decline was less marked and seen only at high concentrations. The results with 5-thio-InsP₃ from 22 cells are summarized in Table 1. Data are given for the first flash only

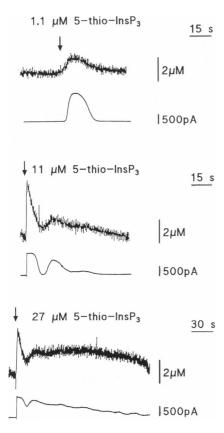


FIGURE 2 Flash photolysis of caged 5-thio-InsP₃ in guinea pig hepatocytes. Free [Ca²⁺]_i measured with furaptra fluorescence (upper traces) and whole-cell Ca²⁺-activated K⁺ current at 0 mV (lower traces) in three hepatocytes after photolysis releasing: (A) 1.1 μ M, (B) 11 μ M, and (C) 27 μ M 5-thio-InsP₃ at the times indicated by the arrows.

in each cell because of the evidence of accumulation of 5-thio-InsP₃ with subsequent flashes (see below).

The potency ratio of 5-thio-InsP₃ to InsP₃ is best estimated from these data as the lowest concentrations that produce detectable Ca^{2+} release. Two of six cells tested with 1.1 μ M 5-thio-InsP₃ produced a small, slow rise of $[Ca^{2+}]_i$. InsP₃ released by photolysis to produce a cytosolic concentration of 0.4 μ M reproducibly evoked a small increase of $[Ca^{2+}]_i$ in guinea pig hepatocytes (Ogden et al., 1990, and work in progress). Thus, the low concentration potency ratio of 5-thio-InsP₃ to InsP₃ is at least 1.1:0.4, i.e., at least three times less potent. Reproducible responses were obtained with 2.5 μ M 5-thio-InsP₃, giving a sixfold lower potency than InsP₃.

The duration of the delay between photolytic release of 5-thio-InsP₃ and rise of the [Ca²⁺] or conductance traces decreased from a mean of 4 s at low concentration to a minimum of 30 ms at high concentration (mean, 67 ms; Table 1). The delay after photolytic release of InsP₃ decreases in duration from 0.5-1 s at low concentration (Ogden et al., 1990) to 20 ms at high concentration (Ogden et al., 1991). Thus, the delays with low concentrations of 5-thio-InsP₃ are much longer than those seen with low concentrations of InsP₃ but are reduced by a similar factor with release of high concentrations.

The maximal rate of rise of $[Ca^{2+}]_i$ in the cytosol is proportional to the Ca^{2+} efflux from stores and provides a meas-

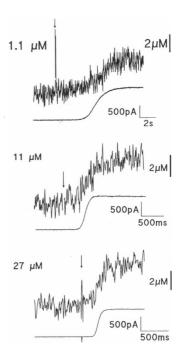


FIGURE 3 Expanded records illustrating the delay and initial rise of $[Ca^{2+}]$ after release of 1.1, 11, and 27 μ M 5-thio-InsP₃ at the times indicated by the arrows. Data are as in Fig.2.

ure of the activation of $InsP_3$ receptors, although it is subject to large cell-to-cell variability, possibly because of differences in $InsP_3$ receptor density/unit cytosolic volume. At low concentration of 5-thio- $InsP_3$, the maximal rate of rise was approximately $1-2~\mu M/s$ and increased to a mean of 8.4 $\mu M/s$ at high concentration. Similar values, also with a wide range at each concentration in different cells, are found with low and high concentrations of $InsP_3$ (T. Capiod and D. C. Ogden, unpublished results). The duration of the period of high Ca^{2+} efflux, when $d[Ca^{2+}]_i/dt$ is maximal and relatively constant in each response, was 2 s at low concentration and 500 ms at high concentration. These represent the periods of high open probability of $InsP_3$ receptors and are similar to the values found with low and high concentrations of $InsP_3$ (T.Capiod and D. C. Ogden, unpublished results).

After the peak [Ca²⁺], which ranged from 0.8 to 5.5 μ M in different cells, [Ca²⁺] declined initially monotonically with a half-time of 5.6 \pm 3.6 s (mean \pm SD; n = 9; mean rate, $-0.28 \pm 0.16 \,\mu\text{M/s}$). In 19 of 22 cells the response showed a second elevation of [Ca²⁺], with a lower rate of rise than the initial response and occurring approximately 10 s later (Fig. 2). In only 1 cell tested, at low (1.1 μ M Fig. 2) 5-thio-InsP₃, was a monotonic decline to initial baseline seen. This contrasts with data obtained with InsP₃ itself, which showed little evidence of prolonged or secondary activation except at high InsP₃ concentration. In 3 cells with 5-thio-InsP₃, repetitive fluctuations of [Ca²⁺] were seen. In the example shown in Fig. 5, a train of 13 spikes of [Ca²⁺], was initiated by release of 18 µM 5-thio-InsP₃. The period between spikes was 20 s, and the amplitude and rate of rise declined progressively. The decline of the K⁺ conductance to zero between spikes indicates that the free [Ca²⁺] adjacent

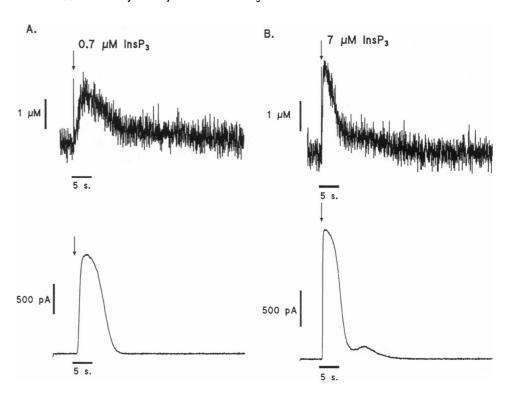


FIGURE 4 Flash photolysis of caged InsP₃ in guinea pig hepatocytes. Responses to release of (A) 0.7 μ M InsP₃ and (B) 7 μ M InsP₃ in different cells. Upper traces show free [Ca²⁺] measured with 500 μ M furaptra, lower traces outward current a result of activation of K⁺ conductance by Ca²⁺ at 0 mV in Cl⁻-free solution. Photolysis by 1-ms flash at the times indicated by the arrows.

to the membrane has fallen below 0.3 μ M. The prolonged or repetitive activation suggests that 5-thio-InsP₃ persists in the cytosol.

Additional evidence of the stability of 5-thio-InsP₃ was from the response to a second flash in the same cell. In three experiments, 1.1 μ M 5-thio-InsP₃ released by the first flash produced no response. When the cells were tested again with release of the same concentration of 5-thio-InsP₃, after 60 s or longer, in each case a response comprising an increase in [Ca²⁺]_i and K⁺ conductance was seen with a mean delay of 5.2 s (range, 2.6–16 s), mean rate of rise of 1.0 μ M/s (0.2–2 μ M/s), and peak [Ca²⁺] of 2.4 μ M (0.8–2.6 μ M).

The possibility that caged 5-thio-InsP₃ might antagonize the actions of 5-thio-InsP₃ itself was tested by comparing results of experiments in which approximately equal concentrations of 5-thio-InsP₃ were released but in some cases with high (180 μ M) and in others low (60 μ M) concentrations of caged 5-thio-InsP₃ present. At 60 μ M caged 5-thio-InsP₃, release of approximately 11 μ M 5-thio-InsP₃ by a single flash produced a mean delay of 190 ms and $d[Ca^{2+}]_i/dt$

TABLE 1 5-Thio-InsP₃ results

[5-Thio-InsP ₃] (µM)	n	Delay (ms)	Maximal slope (μM/s)	[Ca ²⁺] _i increase (µM)
1.1	2/6	2500, 5500	1.0, 1.7	2.0, 4.0
2.5 and 3.2*	5/5	890 ± 200	1.9 ± 0.1	2.0 ± 0.2
11	6/6	170 ± 40	6.9 ± 1.3	3.6 ± 0.6
18	2/2	180, 240	2, 13	2, 4.5
27	3/3	67 (30–130)	8.4 (7.2–9.1)	6.2 (4–9)

n, number of cells responding to first flash/number tried. Results are expressed as mean \pm sem, mean (range), or individual values.

of 6.1 μ M/s in three cells, compared with values of 150 ms and 7.6 μ M/s in three cells with 10 μ M released from a 180 μ M cage. Thus, the presence of 170 μ M caged 5-thio-InsP₃ produces little if any more block than 50 μ M, suggesting that competition by caged 5-thio-InsP₃ for InsP₃ receptor sites is not significant.

DISCUSSION

Synthesis of 5-thio-InsP₃ and caged 5-thio-InsP₃

The synthesis of racemic *myo*-inositol 1,4-bisphosphate 5-phosphorothioate has been described previously (Noble et al., 1992). In the present work, the isomer with the natural configuration has been prepared by using sodium-liquid ammonia to cleave nine benzyl groups from the fully protected

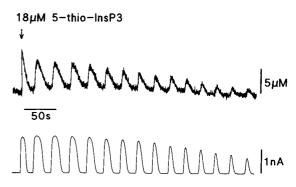


FIGURE 5 Sustained fluctuations of [Ca²⁺] (upper trace) and of Ca²⁺-activated K⁺ current (lower trace) at 0 mV membrane potential in a guinea pig hepatocyte after photolytic release of 18 μ M 5-thio-InsP₃ at the time indicated by the arrow.

^{*}Data obtained at these two concentrations were combined.

precursor 1-p-2,3,6-tri-O-benzyl-myo-inositol 1,4-bis-(dibenzylphosphate)-5-dibenzylphosphorothioate (Desai et al., 1994). Analogous cleavage of fully benzylated precursors has been reported in synthesis of racemic 1,4,5-myo-inositol trisphosphorothioate and 4,5-bisphosphate-1-phosphorothioate (Dreef et al., 1991). In contrast to the complex caging/partial uncaging strategy required to produce caged InsP₃ (Walker et al., 1989), the presence of the phosphorothioate group enables simple, site-specific introduction of the caging moiety, as the reaction of 5-thio-InsP₃ with 1-(2-nitrophenyl)ethyl bromide occurs only at the sulfur atom (cf. Corrie et al., 1992a).

Potency of 5-thio-InsP₃ relative to InsP₃

The potency of 5-thio-InsP₃ relative to InsP₃ is given here as the ratio of concentrations that produce a detectable increase of [Ca²⁺] when compared in several cells. A more rigorous measure would be the concentrations required to produce a Ca^{2+} efflux rate, measured by peak $d[Ca^{2+}]/dt$, of 50% of the maximum recorded at high [InsP₃]. This measure is impractical in the present experiments because of cell-to-cell variability in $d[Ca^{2+}]/dt$, a result of factors such as differing densities/unit volume of InsP₃ receptors, and because the accumulation of 5-thio-InsP₃ from one flash to the next prevents the two-flash experiments that are possible with more labile InsP₃. The concentrations of the 1-D isomer of 5-thio-InsP₃ required to produce a small increase of [Ca²⁺], when released by flash photolysis were 1.1-2.5 μ M, three to six times higher (i.e., lower potency) than the 1-D isomer of InsP, $(0.4 \mu M; Ogden et al., 1990)$, which produced small responses in the same conditions. In a parallel series of experiments to those reported here, flash photolytic release of 5-thio-InsP₃ was used to test whether InsP₃ metabolism was reponsible for the low potency of InsP₃ observed in cerebellar Purkinje cells as compared with hepatocytes (see Khodakhah and Ogden, 1993). The low concentration potency of 5-thio-InsP₃ relative to InsP₃ was the same, requiring 70 and 9 μ M, respectively, suggesting that metabolism of InsP₃ is not responsible for the low sensitivity of Purkinje cells (Khodakhah and Ogden, 1995). Safrany et al. (1991) obtained EC₅₀ values of 0.8 μ M for DL-5-thio-InsP₃ as compared with 0.11 μ M for InsP₃, measuring steady-state Ca²⁺ depletion from stores in permeabilized neuroblastoma cells.

Caged 5-thio-InsP₃ neither released Ca²⁺ nor blocked the action of 5-thio-InsP₃ at concentrations up to 360 μ M, covering the range useful experimentally with 5-50% photolysis.

Time course of the [Ca²⁺]_i change evoked by photolytic release of 5-thio-InsP₃

The pattern seen in the kinetics of Ca^{2+} release by 5-thio-InsP₃ is similar to that found with InsP₃ itself (Figs. 2, 3, and 4). There is first a delay that decreases in duration at high concentration, a period of rapid efflux lasting 0.5–2 s with the rate $d[Ca^{2+}]/dt$ higher at high concentration, and then a

sharp transition to negative $d[Ca^{2+}]/dt$ and slower recovery toward basal $[Ca^{2+}]$. A reactivation of Ca^{2+} release of variable intensity occurs with 5-thio-InsP₃ and in some cells with high concentration of InsP₃.

The delay after the flash before a detectable rise of $[Ca^{2+}]_i$ seen with minimally effective concentrations of 5-thio-InsP₃ was much longer (mean, 4 s at 1.1 μM) than the delays seen with InsP₃ (mean, 0.68 s at 0.4 μ M; T. Capiod and D. C. Ogden, manuscript in preparation). The shorter delay with InsP₃ suggests that breakdown by 5-phosphatase may increase the concentrations needed to evoke a response and that lower concentrations of InsP₃ acting with longer delays may be effective if 5-phosphatase were inhibited. This provides evidence that the 5-phosphatase may modify hormonal responses by reducing InsP₃ concentrations during hormone action. Also, the potency ratio of InsP₃ to 5-thio-InsP₃ may be greater than that given here if 5-phosphatase were not active. At high concentrations of InsP₃ and 5-thio-InsP₃, the delays are short, <20 and 60 ms, respectively, and the rates of photolysis (half-times of 3 and 8 ms, respectively) may be partially rate limiting in receptor activation. The origin of the delay with InsP₃ and 5-thio-InsP₃ is uncertain. It may be a result of cooperativity in InsP₃ binding, the structural and some flux data (Meyer et al., 1988) suggesting four bindings per activation, or to a positive cooperative interaction with cytosolic Ca²⁺ (Iino, 1990; mechanisms reviewed by Ogden et al., 1993). The data presented here do not distinguish between these mechanisms.

The rate of rise of cytosolic [Ca²⁺] increases with 5-thio-InsP₃ concentration, with a similar maximal value to that seen with InsP₃ and with a similar duration of the period of high efflux, 2 s at low and 0.5 s at high concentration. The peak Ca²⁺ concentrations attained with 5-thio-InsP₃ are also similar to those with InsP₃. The absence of any difference suggests that InsP₃ breakdown is not important in determining the kinetics of this phase of the [Ca²⁺] response.

The short period of high $d[Ca^{2+}]/dt$ and sharp decline of $[Ca^{2+}]_i$ after the peak indicates that efflux from stores is very quickly terminated, even though 5-thio-InsP₃ or InsP₃ is still present. This supports earlier conclusions based on twin pulse experiments with InsP₃ (Ogden et al., 1990) that there is an inactivation process, probably via elevated $[Ca^{2+}]_i$.

With 5-thio-InsP₃, there was evidence of reactivation of Ca²⁺ release after the initial decline even with low concentrations, whereas evidence of reactivation was seen only at high concentrations of InsP₃ itself. Repeated activation of Ca²⁺ release has been seen in hepatocytes during continuous perfusion of 1,4,5-InsP₃ and 2,4,5-InsP₃ at high concentration from the whole-cell patch pipette (Capiod et al., 1987; Ogden et al., 1990) and was advanced as evidence that the properties of the InsP₃ receptor are important in producing the periodic fluctuations of [Ca²⁺] seen in guinea pig hepatocytes with hormonal stimulation. The prolonged periodic fluctuations reported here after a single pulse of 5-thio-InsP₃ provide additional evidence that cyclic activation and inactivation of the InsP₃ receptor may occur with a steady InsP₃

concentration, with spike interval determined by the 20-s recovery time from Ca²⁺ inactivation (Ogden et al., 1990).

In summary, the results with photorelease of 5-thio-InsP₃ show that breakdown of InsP₃ is a significant factor in determining the time course and concentration dependence of the initial activation of Ca²⁺ release and is essential to prevent reactivation of the Ca²⁺ release mechanism once InsP₃ production has declined. They also show that InsP₃ metabolism does not play a part in terminating the period of activation of InsP₃ receptors, that this happens by a different mechanism, and that reactivation of receptors during hormone-induced Ca²⁺ fluctuations may occur without fluctuations in the InsP₃ concentration.

We thank Drs. R. Gigg and T. Desai for providing 1-D-2,3,6-tri-O-benzyl-myo-inositol 1,4-bis(dibenzylphosphate)-5-dibenzylphosphorothioate. Supported by the Medical Research Council (UK) and the Anglo-French Alliance Programme.

REFERENCES

- Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. *Nature*. 361:315–325.
- Berridge, M. J. and B. V. L. Potter. 1990. Inositol trisphosphate analogues induce different oscillatory patterns in *Xenopus* oocytes. *Cell Regul*. 1:675–681.
- Burgess, G. M., R. F. Irvine, M. J. Berridge, J. S. McKinney, and J. W. Putney. 1984. Actions of inositol phosphates on Ca²⁺ pools in guinea pig hepatocytes. *Biochem. J.* 224:741–746.
- Capiod, T., A. C. Field, D. C. Ogden, and C. A. Sandford. 1987. Internal perfusion of guinea pig hepatocytes with buffered calcium ion or inositol 1,4,5-trisphosphate activates potassium and chloride conductances. FEBS Lett. 217:247–252.
- Capiod, T., and D. C. Ogden. 1989a. Properties of membrane ion conductances evoked by hormonal stimulation of guinea pig and rabbit isolated hepatocytes. *Proc. R. Soc. Lond.* B236:187–201.
- Capiod, T., and D. C. Ogden. 1989b. The properties of calcium-activated potassium ion channels in guinea pig isolated hepatocytes. J. Physiol. 409:285–295.
- Carter, T. D., and D. C. Ogden. 1992. Kinetics of intracellular calcium release by InsP₃ and extracellular ATP in porcine cultured endothelial cells. *Proc. R. Soc. Lond. B.* 250:235–241.
- Corrie, J. E. T., Y. Katayama, G. P. Reid, M. Anson, and D. R. Trentham. 1992a. The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules. *Phil. Trans. R. Soc. Lond. A.* 340:233–244.
- Corrie, J. E. T., G. P. Reid, D. R. Trentham, M. B. Hursthouse, and M. A. Mazid. 1992b. Synthesis and absolute stereochemistry of the two diastereoisomers of P³-1-(2-nitrophenyl)ethyl adenosine triphosphate ('caged' ATP). J. Chem. Soc. Perkin Trans. 1:1015–1019.
- Desai, T., J. Gigg, R. Gigg, and E. Martín-Zamora. 1994. The preparation of intermediates for the synthesis of 1-p-myo-inositol 1,4,5- and 2,4,5-trisphosphate, 1-p-myo-inositol 1,4-bisphosphate-5-phosphorothioate and 4,5-bisphosphate-1-phosphorothioate from 1-p-3,6-di-O-benzyl-1,2-O-isopropylidene-myo-inositol. Carbohydr. Res. 262:59-77.
- Dreef, C. E., G. W. Mayr, J. P. Jansze, H. C. P. F. Roelen, G. A. van der Marel, and J. H. van Boom. 1991. An expeditious synthesis of biologically important myo-inositol phosphorothioates. Bio-org. Med. Chem. Lett. 1:239-242.
- Field, A. C., and D. H. Jenkinson. 1987. The effect of noradrenaline on the ion permeability of isolated mammalian hepatocytes, studied by intracellular recording. J. Physiol. 392:493-512.

- Finch, E. A., T. J. Turner, and S. M. Goldin. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate induced calcium release. *Science*. 252:443–446.
- Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrame patches. *Pflügers Arch. Eur. J. Physiol.* 391:85–100.
- Iino, M. 1990. Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate induced Ca²⁺ release in smooth muscle cells of the guinea pig taenia caeci. *J. Gen. Physiol.* 95:1103–1122.
- Kaplan, J. H., B. Forbrush, and J. F Hoffman. 1978. Rapid photolytic release of adenosine 5'-trisphosphate from a protected analogue: utilization by the Na:K pump of human red cell ghosts. *Biochemistry*. 17:1929–1935.
- Khodakhah, K., and D. C. Ogden. 1993. Functional heterogeneity of calcium release by inositol 1,4,5-trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes and peripheral tissues. *Proc. Natl. Acad. Sci.* USA. 90:4976–4980.
- Khodakhah, K., and D. C. Ogden. 1995. Fast activation and inactivation of InsP₃ evoked Ca²⁺ release in rat cerebellar Purkinje neurones. J. Physiol. In press.
- Konishi, M., S. Hollingworth, A. B. Hawkins, and S. M. Baylor. 1991.Myoplasmic Ca²⁺ transients in intact frog skeletal muscle fibres monitored with the fluorescent indicator furaptra. J. Gen. Physiol. 97:271–302.
- Meyer, T., D. Holowka, and L. Stryer. 1988. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. *Science*. 240: 653–656.
- Noble, N. J., A. M. Cooke, and B. V. L. Potter. 1992. Synthesis of (±)-myo-inositol 1,4,5-trisphosphate and the novel analogue (±)-myo-inositol 1,4-bisphosphate 5-phosphorothioate. *Carbohydr. Res.* 234:177-187.
- Ogden, D. C., T. Capiod, and T. D. Carter. 1991. The delay in activation of plasmalemmal K⁺ conductance by Ca²⁺ ions released by inositol trisphosphate in guinea pig hepatocytes. *J. Physiol.* 434:39P.
- Ogden, D. C., T. Capiod, J. W. Walker, and D. R. Trentham. 1990. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca²⁺ in guinea pig isolated hepatocytes. *J. Physiol.* 422:585–602.
- Ogden, D. C., K. Khodakhah, T. D. Carter, P. T. A. Gray, and T. Capiod. 1993. Mechanism of intracellular calcium release during hormone and neurotransmitter action investigated with flash photolysis. J. Exp. Biol. 184:105-127.
- Ogden, D. C., K. Khodakhah, T. D. Carter, M. Thomas, and T. Capiod. 1995. Analogue computation of transient changes of intracellular free calcium concentration with the low affinity Ca²⁺ indicator furaptra during wholecell patch clamp recording. *Pflügers Arch. Eur. J. Physiol.* 429:587–591.
- Payne, R., and B. V. L. Potter. 1991. Injection of inositol trisphosphorothioate into *Limulus* ventral photoreceptors causes oscillations of free cytosolic calcium. *J. Gen. Physiol.* 97:1165–1186.
- Rapp, G., and K. Guth. 1988. A low cost high intensity flash device for photolysis experiments. *Pflügers Arch. Eur. J. Physiol.* 411:200–203.
- Safrany, S. T., R. J. H. Wojcikiewicz, J. Strupish, J. McBain, A. M. Cooke, B. V. L. Potter, and S. R. Nahorski. 1991. Synthetic phosphorothioate-containing analogues of inositol 1,4,5-trisphosphate mobilize intracellular Ca²⁺ stores and interact differentially with inositol 1,4,5-trisphosphate 5-phosphatase and 3-kinase. *Mol. Pharmacol.* 39:754–761.
- Walker, J. W., J. Feeney, and D. R. Trentham. 1989. Photolabile precursors of inositol phosphates: preparation and properties of 1-(2nitrophenyl)ethyl esters of myo-inositol 1,4,5-trisphosphate. Biochemistry. 28:3272–3280.
- Walker, J. W., G. P. Reid, J. A. McCray, and D. R. Trentham. 1988. Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogues: synthesis and mechanism of photolysis. J. Am. Chem. Soc. 110:7170–7177.
- Woods, N. M., K. S. R. Cuthbertson, and P. H. Cobbold. 1986. Repetitive transient rises in cytoplasmic free calcium in hormome-stimulated hepatocytes. *Nature*. 319:600–602.